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Precision landing is a key requirement for sustainable lunar surface access. Active 

precision navigation is a critical technology that satisfies this requirement. It enables lunar 

vehicles to autonomously “land anywhere, land anytime” without suffering from limitations 

encountered by passive approaches. This paper details the rapid maturation of an active 

Terrain Relative Navigation (TRN) system which is comprised of sensing and processing 

components, both of which build on proven flight heritage origins. This active TRN system 

has been flight tested on a fixed-wing platform for risk reduction of the technology prior to 

inclusion on upcoming lunar missions. This flight testing included the first real-time 

demonstration of the active TRN system. Results from these test campaigns are presented to 

show that the active TRN capability can satisfy precision landing accuracy requirements. 

I. Introduction 

Since the inception of the NASA Artemis program, a precision landing requirement has existed for missions to the 

lunar surface [1]. Both crewed and uncrewed missions under the Human Landing System (HLS) and Commercial 

Lunar Payload Services (CLPS) programs mandate autonomous precision landing as a key requirement. This 

requirement drives the need for an onboard navigation system to provide state knowledge with enough precision to 

enable landing accuracy within 50 m of a targeted site. 

Various navigation approaches exist to meet the precision landing requirement, but for initial missions to the Moon 

where other navigation aids are unavailable, Terrain Relative Navigation (TRN) is the enabling technology. All TRN 

systems function in the same basic manner: observations of the terrain surface are autonomously compared against 

reference data to determine a navigation state. Recent examples of successful TRN applications for precision landing 

include the OSIRIX-REx and Mars2020 landings [2,3]. TRN capabilities have also been developed for demonstration 

and utilization on upcoming lunar missions [4,5] and other interplanetary applications [6,7]. 

The principal limitation of these approaches is that they rely on sensing via passive optical cameras. While mature 

and flight proven, the downside of any passive approach is that the TRN sensor can only be used when the terrain 

surface is visible. This limitation places a constraint on landing site selection, approach trajectory, and landing time. 

Active TRN circumvents this limitation by sensing the terrain surface independently from illumination conditions. 

The basic active TRN concept, utilizing various active sensing technologies, has historically existed for terrestrial 

GPS-denied navigation applications and has been previously proposed for application to lunar missions [8-10]. 

Blue Origin has been developing and testing lunar guidance, navigation, and control capabilities and through the 

NASA Deorbit, Descent, and Landing (DDL) Tipping Point program, two suborbital test flights were performed using 

the New Shepard vehicle [11]. These flights included a suite of technologies, and findings from the test campaign 

have informed the development of the LiDAR sensor described in this paper. Additionally, core navigation algorithms 

and software were also developed and demonstrated under this program. Following the completion of the partnership, 

private development of an active LiDAR-based TRN system was initiated to address the emergent limitations of 

passive TRN. 
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Fig. 1 Active TRN Concept-of-Operations 

 

The TRN approach that is illustrated in Fig. 1 makes use of a multi-beam LiDAR rangefinder which serves as the 

active sensor. Discrete range measurements between the sensor and lunar surface are used to provide the data needed 

for TRN processing. Section II of this paper provides further technical detail regarding this approach and shows 

analysis of predicted performance. To rapidly mature this active TRN technology for application on upcoming lunar 

missions, terrestrial fixed-wing flight testing has been performed. Section III details these flight campaigns and results 

from this testing are presented in Section IV. 

II. Technology Overview 

The active TRN system described in this paper is comprised of a sensing component and a processing component 

as shown in Fig. 2. The sensing component collects measurements of the terrain surface, and the processing component 

compares these measurements with onboard map data to provide a navigation solution. Both components are detailed 

in this section along with corresponding analysis that shows the predicted performance of the integrated system. 

Though the specific lunar application of this concept is novel, the fundamental technology that active TRN builds 

upon is relatively mature and well understood. 

 

Fig. 2 Active TRN System Components 

A. Algorithm Overview 

There are multiple algorithmic approaches for performing active TRN. Several methods have been investigated 

and evaluated against criteria consisting of navigation performance, resource requirements, and complexity. This 

evaluation has led to the selection of a profile matching algorithm as the baseline approach for the active TRN in this 

paper. The major functional components of this approach are outlined in Fig. 3 (not shown are various stages of outlier 

rejection employed throughout the data processing pipeline for robustness). 

The profile matching algorithm relies on accumulating LiDAR range measurements over an interval of time and 

combining them with an estimated navigation state to form a terrain profile. A matching operation is then performed 

between the measured profile and known reference terrain to produce a three-dimensional position offset. A 

formulation of normalized cross-correlation is employed to efficiently determine this offset with invariance to 

magnitude and data sparsity differences between measured profiles and reference terrain data. The profile match offset 

represents error in the estimated navigation state and forms the TRN update used to correct this error.  

This algorithm achieves the navigation performance needed while also satisfying computational resource and 

complexity criteria. A similar algorithmic approach has been detailed by JPL [12] and utilized for independent 

verification and validation of the Blue Origin active TRN system. 
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Fig. 3 Active TRN Algorithm 

B. Sensor Overview 

Utilizing the profile matching algorithm, sensitivity studies have been conducted to inform driving sensor 

requirements needed to perform active TRN. Numerous factors such as range, noise, beamwidth, etc. were analyzed 

to establish high-level sensor specifications (see Table 1). The primary driving requirement is the measurement range 

needed to provide active TRN coverage prior to powered descent initiation and through to landing. This requirement 

must accommodate a diversity of landing sites and approach trajectories. The number of beams providing range 

measurements is another important requirement. While active TRN can be achieved with only a single beam, 

additional beams oriented in different directions increase the overall system fault tolerance and improve availability 

by increasing the probability of observing dense terrain features (the profile matching algorithm is formulated in a 

manner that accommodates additional data sources from multiple beams in a computationally efficient manner). 

Table 1 LoRA Specifications 

Line-of Sight Measurement Range 1 – 30 km 

Line-of-Sight Measurement Accuracy ≤ 1 m (3σ) 

Line-of-Sight Velocity Limits ± 400 m/s 

Number of Beams 2 

Measurement Rate 10 Hz 

Beam Divergence ≤ 0.025 deg (half-angle) 

 

An additional consideration is sensor maturity and the path to operational flight use. The sensor under development 

for active TRN is called the Long-Range Altimeter (LoRA). The LoRA is developed by Optical Air Data Systems and 

is a derivative of the flight-proven Optical Moon Proximity Sensor (OMPS). The OMPS was originally developed for 

lunar application and has been flight tested on New Shepard in 2020 and 2021 under the Tipping Point program [11]. 

The OMPS provides discrete range and velocity measurements from four optical heads, whereas the LoRA (shown in 

Fig. 4) has extended range and only two optical heads. The principal advantage of this sensor strategy is the rapid 

development awarded by iterating upon an existing design with spaceflight heritage. 
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Fig. 4 LoRA Optical Telescopes and Electronics Chassis 

C. Lunar Analysis 

A framework for analysis and test of this active TRN system has been developed. LiDAR measurements are 

provided from a sensor model that performs ray-terrain intersection to accurately predict range values given position, 

velocity, and attitude information. All sensor parameters are modeled, and system-level errors such as beam line-of-

sight misalignment are also included. Multiple lunar terrain data sets are utilized to test the system performance in 

simulation. From a TRN perspective, lunar maria terrain is used to capture flat feature-sparse regions, and lunar 

highlands terrain is used to capture rough feature-dense regions. As the performance of the TRN system is terrain 

dependent, map data from each of these regions is used to provide a comprehensive representation of the lunar 

environment (see Fig. 5). 

 

Fig. 5 Lunar Terrain Data Sets 

The performance of the TRN system is fundamentally driven by the resolution of the reference terrain data (with 

higher spatial resolution providing greater profile match accuracy). Reference terrain data is split into multiple discrete 

maps that provide continuous ground coverage with increasing resolution during the lunar descent. A progression 

from 60 m/px to 5 m/px has been utilized and data has been sourced from the Lunar Reconnaissance Orbiter Laser 

Altimeter (LOLA) [13] and Kaguya Terrain Camera (TC) [14]. Synthetic craters were added to the terrain data used 

by the LiDAR model to represent features that will be seen by the sensor during landing but are not present in the 

reference data due to resolution limitations (the terrain data used by the active TRN algorithm is left unmodified).  

Monte Carlo analysis has been performed using the active TRN flight software against both maria and highlands 

data sets with the high-level initial conditions listed in Table 2. Closed-loop analysis has been performed with vehicle-

level guidance and control, but open-loop analysis against a set of dispersed trajectories allows for navigation 

performance to be observed separately. See Fig. 6 for open-loop results where the system can be seen showing closure 

against the 50 m precision landing requirement at landing. Additionally, note that differences in the final position error 

achieved between the different types of terrain are minimal. This is critical as it illustrates the generalized performance 

of the algorithm across the diversity of lunar terrain types and demonstrates the global availability of the active TRN 

system. Similar results have been obtained by independent, external analysis [10,12]. 

Table 2 Monte Carlo Initial Conditions 

Position Knowledge Error (3σ) [1500, 5000, 1000] m (radial, in-track, and cross-track) 

Velocity Knowledge Error (3σ) [4.0, 1.0, 0.5] m/s (radial, in-track, and cross-track) 

Attitude Knowledge Error (3σ) [0.15, 0.15, 0.15] deg (per-axis) 
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Fig. 6 Active TRN Monte Carlo Results (1000 Runs) 

Sensitivity studies have also been performed using this analysis framework. Factors that contribute to active TRN 

performance are knowledge initialization error, profile length, minimum altitude/velocity, and reference map 

resolution: 

• The TRN system is specifically designed to correct position error and is therefore insensitive to position 

knowledge at initialization. The only implication is the sizing of reference terrain data, and this can be 

addressed through mission planning and incorporation of expected uncertainty. Velocity knowledge at 

initialization can impact profile formation, but for the lunar mission scenario these errors are not significant. 

The primary driver for active TRN performance is attitude knowledge at initialization (and beam pointing 

knowledge more broadly). Analysis has shown a graceful degradation in performance as greater pointing 

errors lead to greater position bias in the TRN corrections. This effect is greater at high altitude and is 

minimized during the natural progression toward the lunar surface during powered descent. The incorporation 

of a star tracker is assumed at the vehicle level for this active TRN system. 

• The profile length is selected to balance several factors. Greater accuracy and robustness to ambiguity can 

be achieved with a longer profile. However, a longer profile results in greater susceptibility to velocity error 

over the measurement interval as well as a more infrequent TRN update rate. Intervals on the order of 5 sec 

have been found to strike a balance between these considerations. 

• The lower limit for active TRN operation is dependent on several factors and is sensitive to differences in the 

terminal landing trajectory and sensor orientation. Fundamentally, this constraint arises when profiles can no 

longer be formed and matched by active TRN. The system is designed to nominally stop operation at a range 

of 1 km to the landing site. 

• Spatial resolution of reference map data is a driver for any form of TRN system. While higher resolution 

increases precision, lower resolution allows for faster computation and reduced storage needs. Therefore, the 

progression from 60 m/px to 5 m/px has been selected along the powered descent and landing profile. This 

allows requirements to be satisfied with lunar terrain data that is available for operational use. 

The active TRN flight software is implemented in C/C++ and has been deployed to flight avionics hardware for 

processor-in-the-loop demonstration and testing. Profiling has shown that active TRN corrections can be computed at 

an update rate that is less than the LiDAR profile collection interval. Analysis has shown that this measurement rate 

is more than sufficient to meet precision landing requirements. 

III. Flight Test Overview 

Two flight campaigns were executed in 2022 to further mature the active TRN technology. Test objectives included 

demonstration of sensor and flight software functionality as well as validation of simulation assumptions to anchor 

lunar performance. The first test was primarily a data collection effort that utilized the OMPS sensor while 

construction of the LoRA was taking place. The second test incorporated the newly built LoRA (Fig. 7) and also 

featured real-time onboard demonstration of the active TRN flight software. The second test was funded by NASA as 

a technology risk reduction for HLS. 
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The campaigns were conducted on a Gulfstream III jet platform that provided the necessary altitude and ground 

speeds needed to perform the flight testing in a representative manner. Two main test profiles were utilized for each 

campaign. Racetrack profiles were collected at a constant altitude and ground speed and were used to maximize data 

collection efficiency. Surrogate lunar descent profiles were also used to capture mission representative data that 

matched the final portion of a lunar descent trajectory as closely as practical. Ground speeds ranged from 0 – 200 m/s 

and altitudes ranged from 0 – 8 km (above ground level). The LiDAR sensors were mounted in a centerline fairing 

with fixed line-of-sight to the terrain surface. Additionally, a tactical-grade INS was utilized to provide a truth 

trajectory and raw IMU measurements for active TRN processing. All sensors were installed in a common mechanical 

bracket assembly within the centerline fairing. This assembly also contained an air anti-fogging system and a witness 

camera to confirm unimpeded optics for the duration of flight operations. Data collection equipment and engineering 

displays were installed in the cabin and on the second campaign the active TRN flight processor was also installed. 

Integration and test of all components and a brief checkout flight were conducted prior to execution of each campaign. 

 

Fig. 7 LoRA Engineering Unit, Sensor Fairing, Testbed Aircraft, and In-Cabin Engineering Station 

Flights were conducted in two major geographic areas in Texas (TX) and Wyoming (WY). Both test locations 

contained different terrain types which were broadly categorized as either feature-dense or feature-sparse (see Fig. 8). 

The feature-dense terrain contained significant relief and was analogous to lunar highlands terrain while the feature-

sparse terrain was flatter and analogous to lunar maria. In either case, flight profiles were collected over areas devoid 

of significant vegetation and non-natural features. Reference terrain data was sourced from the USGS 3D Elevation 

Program (3DEP) [15] and reformed for active TRN utilization at spatial resolutions of 8 – 9 m/px. 

 

Fig. 8 Terrestrial Flight Test Terrain in TX and WY 

As previously mentioned, during the second test campaign, the active TRN system was operated onboard. Data 

from the LoRA was sent to a flight processor which executed the profile matching software against terrain maps 

covering the test areas. This was the first real-time demonstration of the fundamental algorithm in a flight environment. 

Live demonstration also served as a validation of several processes that are key drivers of system performance. Pre-

flight metrology was performed to characterize the as-installed LiDAR beam line-of-sight angles. This drives TRN 

performance as error in pointing knowledge manifests as a position bias in the output from the TRN algorithm. The 

terrain map formation process also presents a bias source as any error in the georegistration of the reference terrain 

data is directly carried as an error in the TRN position solution. Categorization of in-flight system performance has 

shown that these error sources can be kept within the needed tolerances to meet position accuracy requirements. 
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Approximately 15 total hours of flight testing were performed across both campaigns (see Table 3 for a summary 

of test points). Each test point varied the altitude, ground speed, heading, or terrain type to capture a diverse, lunar 

representative data set. The lunar operating time for active TRN is only a few minutes to provide precision navigation 

during powered descent and landing and therefore there is a significant amount of terrestrial data now available for 

performance analysis. 

Table 3 Summary of Collected Data 

Campaign #1 
OMPS Only 

25 racetrack profiles 5 surrogate profiles 30 total test points 7.5 total flight hours 

Campaign #2 
LORA & OMPS 

16 racetrack profiles 7 surrogate profiles 23 total test points 7.5 total flight hours 

IV. Flight Test Results 

All results presented in this section are from the second test campaign and are exclusive to performance provided 

by the LoRA sensor. The results are discussed at the sensor-level, algorithm-level, and system-level.  

A. Sensor Performance 

First presented is an analysis of the difference between raw LoRA range measurements and predictions from the 

sensor model. The purpose of this analysis is to confirm that the sensor is satisfying specified requirements and to 

validate the model. This validation is important because the sensor model is utilized for lunar simulation and 

performance analysis. As shown in Fig. 9, the difference between the measurements and predictions is minimal and 

within expectations. Residual differences are attributable to uncorrected pointing knowledge error and uncertainty in 

the reference elevation data that is utilized for the ray-terrain intersection. 

 

Fig. 9 Raw LoRA Range Measurements and Sensor Model Predictions 

Sensor performance was also compared against data from the GSFC Land, Vegetation, and Ice Sensor (LVIS) 

LiDAR [16]. Specific grounding runs were collected between waypoints previously surveyed by LVIS, enabling 

additional validation of sensor functionality. 
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B. Profile Matcher Algorithm Performance 

Following a grounding of the raw sensor performance, attention can be turned to the core profile matching 

algorithm. See Fig. 10 for a summary of total position error from this algorithm across all collected test points 

(separated by terrain type). There are over 1000 samples present in this plot with each sample consisting of the error 

between a given TRN correction and the truth trajectory. Factors that contribute to this error include the performance 

of the profile matching algorithm itself as well as bias from beam pointing knowledge, terrain data geolocation, and 

time synchronization of sensor data. 

 

Fig. 10 Total Position Error of Profile Matcher Algorithm 

Two key performance metrics illustrated by this plot are the algorithm accuracy and availability. Accuracy is 

defined as the amount of position error and is observable on the x-axis. It is the most important metric as it drives the 

overall performance of the active TRN system. Availability is the ability for the profile matcher to return a position 

fix for a given interval of time and is observable on the y-axis. Unlike accuracy, this can be addressed at the system-

level by coasting inertially during periods where the profile matching algorithm fails to produce a solution. 

The results show that approximately 90% of all profile matches on feature-dense terrain exhibit position error less 

than 50 m. The feature-sparse terrain reduces availability, but the accuracy of the profile match output is still sufficient 

for use at the active TRN system-level (e.g. 65% of total position error is less than 50 m). The objective of the test 

campaign was to collect data at a diversity of conditions, and the challenging feature-sparse terrain provides an 

important mechanism to determine where profile matching availability is reduced. Recall that results were generated 

in real-time during flight test operations and no further optimization of beam alignment has been performed. The 

results reflect the real-world operation of the active TRN system, and this performance validates the results obtained 

from lunar simulations of the active TRN system.   

To better understand bias sources, see Fig. 11 for the horizontal position error of these profile matcher results. 

Note that these results differ from those shown in Fig. 6 as they are error in the core algorithm, not the final position 

error at the end of a landing run (the results in Fig. 6 have also been processed by the active TRN navigation filter 

which further improves the precision of the profile matcher).  
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Fig. 11 Horizontal Position Error of Profile Matcher Algorithm 

The non-uniformity of the horizontal error is a result of flight profiles being repeatedly conducted between 

waypoints with the same ground track. The profile matching algorithm is inherently more accurate in the in-track 

direction of travel compared to the cross-track direction due to density of measurements produced along the vehicle 

flight path (this same phenomenon is observable in the lunar simulation results shown in Fig. 6). Performance for each 

test point is summarized in Table 4 and Table 5. Racetrack profiles are denoted with “R” and surrogate profiles are 

denoted with “S”. Each test point has a different altitude, ground speed, and heading. Performance is relatively 

invariant to these factors and only the terrain type is listed. Availability is the percentage of samples that result in a 

returned TRN correction from the profile matcher algorithm. For these results, accuracy is presented as the horizontal 

Circular Error Probable (95%) of TRN corrections conditional on availability. 

Table 4 TX Profile Matcher Performance 

Test 

Point 
Terrain Samples Availability 

Accuracy 
CEP95 

R1 Sparse 58 58.62 % 40.71 m 

R2 Dense 61 93.44 % 21.28 m 

R3 Sparse 43 39.53 % 46.87 m 

R4 Dense 68 79.41 % 28.16 m 

R5 Dense 55 92.73 % 35.51 m 

R6 Sparse 57 49.02 % 29.13 m 

R7 Dense 64 96.88 % 19.78 m 

R8 Sparse 41 92.68 % 38.83 m 

R9 Sparse 59 29.31 % 36.51 m 

R10 Dense 59 88.14 % 26.68 m 

S1 Dense 51 94.12 % 24.83 m 

S2 Dense 53 79.25 % 21.21 m 

S3 Dense 48 81.13 % 21.52 m 

Table 5 WY Profile Matcher Performance 

Test 

Point 
Terrain Samples Availability 

Accuracy 
CEP95 

R1 Dense 45 100.00 % 17.96 m 

R2 Sparse 55 90.74 % 28.15 m 

R3 Dense 48 87.50 % 20.67 m 

R4 Sparse 44 65.31 % 27.67 m 

R5 Dense 48 93.75 % 29.75 m 

R6 Sparse 50 92.00 % 29.62 m 

S1 Dense 23 100.00 % 24.95 m 

S2 Sparse 42 89.19 % 39.44 m 

S3 Dense 40 95.00 % 30.30 m 

S4 Sparse 34 63.64 % 39.58 m 

 

C. Integrated System Performance 

With an understanding of the core profile matching algorithm performance, the active TRN system-level 

performance is now presented with respect to navigation requirements (i.e. maintaining position error less than 50 m 

over time to enable precision landing). In order to operate on the flight data, the only configuration changes made to 

the active TRN system are the gravity model used for Earth operation and characteristics for the tactical-grade MEMS 

IMU that was utilized. The navigation filter is otherwise untuned for this terrestrial data. 
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The horizontal and vertical components of position error are shown in the bottom row plots of Fig. 12 for surrogate 

profiles that were conducted to match that of a lunar descent. The altitude profiles and displayed in the top row to 

provide context for the trajectory, and range data from the LoRA is displayed in the top row of plots to provide context 

for the measurements the active TRN system is consuming. At the beginning of each run, the active TRN system is 

initialized with position, velocity, and attitude information. From this point onward, the active TRN system only 

consumes IMU measurements and range data from the LiDAR. 

 

Fig. 12 Active TRN System-Level Performance on Surrogate Lunar Descents 

Multiple minutes of operation are shown in these plots over representative flight profiles and representative terrain. 

The vertical component of position error is unsurprisingly very low, and the horizontal error component remains 

within the 50 m requirement for each run. 

The effect of the profile matcher availability is noticeable in these results. Observe the active TRN behavior at the 

beginning of run #2 (center) and run #3 (right) where sensor data is limited at long range. During this time, the profile 

matcher is unable to produce TRN corrections and the position error of the navigation filter grows while coasting 

inertially. Once availability is obtained, the position error is immediately reduced and continues to stay within 

expectations until the end of a run. This is notable as it shows the inherent robustness of the active TRN system to 

data sparsity/sensor faults. 

V. Conclusion 

The purpose of the flight testing detailed in this paper was to mitigate the developmental risk in the active TRN 

technology. At the conclusion of this testing, the viability of the active TRN navigation approach in addressing NASA 

landing accuracy requirements has been flight proven. A new sensor has been developed and functionally validated. 

The profile matching algorithm has been demonstrated in real-time on a flight processor. Finally, the active TRN 

system as a whole has been exercised with lunar representative flight trajectories and lunar representative terrains. 

The active TRN system was shown to be capable of providing a navigation solution with position error within 50 m 

across a diversity of test points and on surrogate lunar descents. Major developmental risks have been retired and the 

active TRN system is showing closure against requirements for precision lunar landing. Continued verification and 

validation testing of this active TRN system is ongoing prior to lunar application. 
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